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ESTIMATOR UNDER UNCERTAINTY\ast 
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Abstract. In this paper, we study a generalized Kalman--Bucy filtering problem under uncer-
tainty. The drift uncertainty for both signal process and observation process is considered, and the
attitude to uncertainty is characterized by a convex operator (convex risk measure). The optimal
filter or the minimum mean square estimator (MMSE) is calculated by solving the minimum mean
square estimation problem under a convex operator. In the first part of this paper, this estimation
problem is studied under g-expectation which is a special convex operator. For this case, we prove
that there exists a worst-case prior P \theta \ast . Based on this P \theta \ast we obtained the Kalman--Bucy filtering
equation under g-expectation. In the second part of this paper, we study the minimum mean square
estimation problem under general convex operators. The existence and uniqueness results of the
MMSE are deduced.
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1. Introduction. It is well-known that Kalman--Bucy filtering theory was orig-
inally derived from Kalman and Bucy [27] and is the foundation of modern filtering
theory; see these classic monographs: \r Astr\"om [4], Davis [13], Jazwinski [23], and
Liptser and Shiryaev [31]. It lays the groundwork for further study of optimization
problems under partial information in various fields. For example, Anderson and
Moore [2] which introduced the fundamental result to linear-Quadratic (LQ) optimal
control problem under partial information and the separation theorem; Bensoussan
[6] and Huang, Wang, and Zhang [22] also studied the optimal control for partially
observed stochastic systems; Lakner [30] and Xiong and Zhou [40] considered, respec-
tively, the utility maximization problem and mean-variance portfolio selection under
partial information in mathematical finance field and so on. Further, the nonliner
filtering theory can be referred to Xiong [39].

Let's first recall the classic Kalman--Bucy filtering theory. The model is described
as follows: under the probability measure \BbbP ,
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(1.1)

\left\{       
dx(t) = (B(t)x(t) + b(t))dt+ dw(t),
x(0) = x0,

dm(t) = (H(t)x(t) + h(t))dt+ dv(t),
m(0) = 0,

where x(\cdot ) is the signal process, m(\cdot ) is the observation process, w(\cdot ) and v(\cdot ) are
two independent Brownian motions. The coefficients B(t), H(t), b(t), and h(t) are
deterministic uniformly bounded functions in t \in [0, T ], x0 is a given constant vector.
Set \scrZ t = \sigma \{ m(s); 0 \leq s \leq t\} which represents all the observable information up to
time t. The Kalman filter \=x(t) of x(t) is

\=x(t) = \BbbE [x(t)| \scrZ t],

where \BbbE [\cdot ] denotes the expectation with respect to the probability measure \BbbP . It is
well known that the optimal estimator \=x(t) of the signal x(t) solves the following
minimum mean square estimation problem:

min
\zeta \in L2

\scrZ t
(\Omega ,\BbbP )

\BbbE [\| x(t) - \zeta \| 2].

So \=x(t) is also called the minimum mean square estimator (MMSE).
In this paper, we suppose that there exists model uncertainty for the system (1.1).

One of the uncertainty systems obtained by introducing uncertainty parameters into a
linear stochastic system is called uncertain-stochastic linear dynamic systems (USS),
and the relevant references are Barton and Poor [5], Borisov and Pankov [7], Nagpal
and Khargonekar [32], Pankov and Borisov [33] and [34], and so on. To analyze
USS one may mainly uses robust ([5]), H\infty ([32]), and minimax ([7], [33], and [34])
approaches.

Different from the foregoing system model and the causes of uncertainty, the
meaning of uncertainty in our paper is that we don't know the true probability \BbbP and
only know that it falls in a set of probability measures \scrP which is called the prior set.
The uncertainty in USS is caused by the uncertainty of input and initial state, and
these uncertainties do not affect the system probability measure; please see [33] and
[34] for details.

For continuous-time models, Chen and Epstein [10] first proposed one kind of
model uncertainty which is usually called drift uncertainty. Later Epstein and Ji
proposed more general uncertainty models (see [16] and [17] for details), and Guo
[21] introduced some basic scientific problems concerning the estimation, control, and
games of dynamical systems with uncertainty and shared some related theoretical
progress. In this paper, we introduce the following drift uncertainty model: for every
P \theta \in \scrP , consider

(1.2)

\left\{       
dx(t) = (B(t)x(t) + b(t) - \theta 1(t))dt+ dw\theta 1(t),
x(0) = x0,

dm(t) = (H(t)x(t) + h(t) - \theta 2(t))dt+ dv\theta 2(t),
m(0) = 0,

where w\theta 1 and v\theta 2 are Brownian motions under P \theta and \theta = (\theta 1, \theta 2) \in \Theta is called the
uncertainty parameter. When \theta changes, the distributions of the solutions x(\cdot ) and
m(\cdot ) of the above equations also change. The question now is how to calculate the
Kalman filter in such an uncertain environment. A natural idea is to calculate the
worst-case minimum mean square estimation problem

(1.3) min
\zeta 

sup
P \theta \in \scrP 

EP \theta [\| x(t) - \zeta \| 2],
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KALMAN--BUCY FILTERING AND MMSE UNDER UNCERTAINTY 2671

which is to minimize the maximum expected loss over a range of possible models.
Under the minimax criteria, Borisov and Pankov [7] considered the minimax filtering
in USS, and Borisov [8] and [9] studied this type of estimator for finite state Markov
processes with uncertainty of the transition intensity and the observation matrices.
Allan and Cohen [1] investigated the Kalman--Bucy filtering with an uncertainty pa-
rameter by a control approach. Moreover, in the past decade, much research has been
discussed depending on the technique of H\infty filter; see [11], [12], [32], and so on. Dif-
ferent from this paper, the design goal of H\infty filter is to guarantee that the filtering
error system is asymptotically stable, while achieving a prescribed H\infty performance
level. From another perspective, (1.3) can be rewritten as a minimum mean square
estimation problem under a sublinear operator:

min
\zeta 

\scrE (\| x(t) - \zeta \| 2),

where \scrE (\cdot ) := supP \theta \in \scrP EP \theta [\cdot ] is a sublinear operator. Recently, Ji, Kong, and Sun
[24] and [25] studied Kalman--Bucy filtering under sublinear operators when the drift
uncertainty appears in the signal process and the observation process, respectively.
The related literatures about the minimum mean square estimation problems under
sublinear operators include Sun and Ji [38] and Ji, Kong, and Sun [26] in which they
considered these problems on L\infty (\Omega ,\BbbP ) and Lp(\Omega ,\BbbP ), respectively.

However, when we study some problems, especially financial and risk management
problems, we need to use a more general nonlinear operator: the convex operator or
convex risk measure. For example, in the last decade, the concept of convex risk
measure (a special convex operator) has been extensively studied in various fields
(see F\"ollmer and Schied [19], Arai and Fukasawa [3]). So it is an interesting problem
to solve the minimum mean square estimation problem under the convex operator.
Unlike sublinear operators, the lack of positive homogeneity results in an extra penalty
term in the expression of convex operators. For the convex operator \rho (\cdot ), that is to
say, \rho (\cdot ) can be represented as

\rho (\cdot ) = sup
P \theta \in \scrP 

[EP \theta [\cdot ] - \alpha (P \theta )],

where \alpha (P \theta ) is a penalty function defined on a probability measure set. If \rho (\cdot ) is
sublinear, the \alpha (P \theta ) takes values in \{ 0,\infty \} . The main difference between this paper
and the previous ones is how to deal with the penalty term.

In this paper, we first generalize the Kalman--Bucy filtering to accommodate
drift uncertainty in both signal process and observation process, and the attitude to
uncertainty is characterized by a convex operator (convex risk measure). In more
details, we consider system (1.2) and calculate the MMSE by solving

min
\zeta 

sup
P \theta 

[EP \theta [\| x(t) - \zeta \| 2] + \alpha 0,t(P
\theta )] = min

\zeta 
\scrE g[\| x(t) - \zeta \| 2],

where

(1.4) \scrE g[\cdot ] := sup
P \theta 

[EP \theta [\| \cdot \| 2] + \alpha 0,t(P
\theta )]

is called g-expectation introduced by Peng [35]. Different from [5], [7], [33], and [34],
on the one hand, in essence, this paper considers the optimal estimation of signal
process in the sense of the weak framework, and the optimal estimator is defined by
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2672 S. JI, C. KONG, C. SUN, AND J. ZHANG

a saddle point. This means that there exists a set of filtering systems and filtering
problems under all the probability measure P \theta \in \scrP . For the explanation of the weak
framework, please refer to Chapter 2 of Bensoussan [6]. On the other hand, the
filtering problem itself (2.5) has an additional penalty term \alpha 0,t(P

\theta ). It is because
the presence of the penalty term brings great difficulty in getting the solution to the
filtering problem. In our context, \scrE g[\cdot ] is a special convex operator, and (1.4) is its
dual representation obtained in El Karoui, Peng, and Quenez [15]. Under some mild
conditions, we prove that there exists a worst-case prior P \theta \ast 

. Based on this P \theta \ast 
we

obtained the filtering equation by which the MMSE \^x is governed.
The convex g-expectation is just a special convex operator. It is worth studying

the minimum mean square estimation problem under the general convex operators.
In the second part of this paper, we solve the following problem (for the convenience
of readers, we misused some notations in the introduction and section 4):

min
\zeta 

\rho (\| x(t) - \zeta \| 2),

where \rho (\cdot ) is a general convex operator (convex risk measure). The existence and
uniqueness results of the MMSE under the general convex operators are deduced.

The paper is organized as follows. In section 2, we give some preliminaries and
formulate our filtering problem under g-expectations. In section 3, the worst-case
prior P \theta \ast 

is obtained, and the corresponding Kalman--Bucy filtering equation (3.8)
is deduced. We study the minimum mean square estimation problem under general
convex operators on Lp

\scrF (\BbbP ) and obtain the existence and uniqueness results of the
MMSE in section 4.

2. Preliminaries and problem formulation. Let (\Omega ,\scrF ,\BbbP ) be a complete
probability space on which two standard, independent n-dimensional andm-dimensio-
nal Brownian motions w(\cdot ) and v(\cdot ) are defined. For a fixed time T > 0, denote
by \BbbF =\{ \scrF t, 0 \leq t \leq T\} the natural filtration of w(\cdot ) and v(\cdot ) satisfying the usual
conditions. We assume \scrF = \scrF T . For any given Euclidean space \BbbH , denote by \langle \cdot , \cdot \rangle 
(resp., \| \cdot \| ) the scalar product (resp., norm) of \BbbH . Let A\intercal denote the transpose of
a matrix A. For an \BbbR n-valued vector x = (x1, . . . , xn)

\intercal , | x| := (| x1| , . . . , | xn| )\intercal ; for
two \BbbR n-valued vectors x and y, x \leq y means that xi \leq yi for i = 1, . . . , n. Through
out this paper, 0 denotes the matrix/vector with appropriate dimension whose all
entries are zero. For 1 < p < \infty , denote by Lp

\BbbF (0, T ;\BbbH ) the space of all the \BbbH -valued,
\BbbF -adapted, and pth power integrable stochastic processes f(\cdot ) on [0, T ] such that

\BbbE 

\Biggl[ \int T

0

\| f(r)\| pdr

\Biggr] 
< \infty .

The Kalman--Bucy filtering theory is based on a reference probability measure \BbbP 
for the system (1.1). However, if we don't know the true probability measure \BbbP and
only know that it falls in the set \scrP which is a suitably chosen space of equivalent
probability measures, then it is naturally to study the worst-case MMSEs.

2.1. Prior set and \bfitg -expectation. In order to characterize uncertainty, we
introduce the prior set \scrP and g-expectation which is a special convex operator.

Let \theta (\cdot ) = (\theta 1(\cdot ), \theta 2(\cdot ))\intercal be an \BbbR n+m-valued progressively measurable process on
[0, T ]. For a given constant \mu , let \Theta be the set of all \BbbR n+m-valued progressively
measurable processes \theta with \| \theta i(t)\| \leq \mu , 0 \leq t \leq T . Moreover, the set \Theta is also
requested to satisfy stochastically convex and compact under L2

\BbbF ([0, T ],\BbbP )-norm.
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Remark 2.1. Say that the set \Theta is stochastically convex if for any real-process
\{ \lambda (t)\} t\geq 0 with 0 \leq \lambda (t) \leq 1 \forall 0 \leq t \leq T , \theta and \theta 

\prime 
in \Theta implies that (\lambda (t)\theta (t) + (1  - 

\lambda (t))\theta 
\prime 
(t)) \in \Theta .

Define

(2.1) \scrP =

\biggl\{ 
P \theta | dP

\theta 

d\BbbP 
= f\theta (T ) for \theta \in \Theta 

\biggr\} 
,

where

f\theta (T ) := exp

\Biggl( 
 - 
\int T

0

\theta \intercal 1 (t)dw(t) - 
1

2

\int T

0

\| \theta 1(t)\| 2dt - 
\int T

0

\theta \intercal 2 (t)dv(t) - 
1

2

\int T

0

\| \theta 2(t)\| 2dt

\Biggr) 
.

Due to the boundedness of \theta , the Novikov condition holds (see Karatzas and Shreve
[29]). Therefore, P \theta defined by (2.1) is a probability measure which is equivalent to

probability measure \BbbP , and the processes w\theta 1(t) = w(t)+
\int t

0
\theta 1(s)ds and v\theta 2(t) = v(t)+\int t

0
\theta 2(s)ds are Brownian motions under this probability measure P \theta by Girsanov's

theorem. The set \Theta characterizes the ambiguity, and \scrP is usually called the prior set.
Then, we introduce g-expectation and its dual representation (see [35] and [15]).

In the following we will see that g-expectation is a powerful tool for studying uncer-
tainty.

Definition 2.2. We call a function g : \Omega \times [0, T ] \times \BbbR n \times \BbbR m \rightarrow \BbbR a standard
generator if it satisfies the following conditions:

\bullet (g(\omega , t, z1, z2))t\in [0,T ] is an adapted process with

\BbbE 
\int T

0

| g(\omega , t, z1, z2)| 2dt < \infty 

for all z1 \in \BbbR n and z2 \in \BbbR m;
\bullet g(\omega , t, z1, z2) is Lipschitz continuous in z1 and z2, uniformly in t and \omega : there
exists constant \mu > 0 such that for all z1, \~z1 \in \BbbR n and z2, \~z2 \in \BbbR m we have

| g(\omega , t, z1, z2) - g(\omega , t, \~z1, \~z2)| \leq \mu (\| z1  - \~z1\| + \| z2  - \~z2\| );

\bullet g(\omega , t, 0, 0) = 0 for all t \geq 0 and \omega \in \Omega .

For a standard generator g, the following backward stochastic differential equation
(BSDE)\biggl\{ 

 - dY (t) = g(t, Z1(t), Z2(t))dt - Z\intercal 
1 (t)dw(t) - Z\intercal 

2 (t)dv(t), t \in [0, T ],
Y (T ) = \xi ,

with terminal condition \xi \in L2
\scrF T

(\Omega ,\BbbP ) has a unique square integrable solution (Y (t),
Z1(t), Z2(t))t\in (0,T ] (see [35]). Peng [35] calls Y (t) := \scrE g(\xi | \scrF t) the (condition) g-
expectation of \xi at time t.

Definition 2.3. A standard generator g is called a convex generator if g(\omega , t, z1,
z2) is convex in z1 and z2 for z1 \in \BbbR n and z2 \in \BbbR m. The g-expectation with a convex
generator is called the convex g-expectation.

Now we give the dual representation of the convex g-expectation through the
prior set and the concave dual function of g.
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Let

G(\omega , t, \theta 1, \theta 2) = inf
z1\in \BbbR n,z2\in \BbbR m

[g(\omega , t, z1, z2) + \langle z1, \theta 1\rangle + \langle z2, \theta 2\rangle ]

(\omega \in \Omega , t \in [0, T ], \theta 1 \in \BbbR n, \theta 2 \in \BbbR m)

be the concave dual function of g(\omega , t, z1, z2).
El Karoui, Peng, and Quenez [15] (also see Delbaen, Peng, and Gianin [14])

established the following dual representation for g-expectation: for an \scrF s-measurable
random variable \xi , the g-expectation at time t can be represented as

(2.2) \scrE g(\xi | \scrF t) = sup
P \theta \in \scrP 

[EP \theta [\xi | \scrF t] + \alpha t,s(P
\theta )],

where

(2.3) \alpha t,s(P
\theta ) := EP \theta 

\biggl[ \int s

t

G(r, \theta 1(r), \theta 2(r))dr| \scrF t

\biggr] 
, 0 \leq t \leq s \leq T.

Remark 2.4. It is easy to check that \scrE g(\cdot | \scrF t) is a special convex operator (see
(4.1)). Moreover, if we let the standard generator g(t, z1, z2) = \mu (| z1| + | z2| ), then the
corresponding dual function of g(t, z1, z2) and penalty term \alpha t,s(P

\theta ) are simultane-
ously equal to 0. Then the above convex operator \scrE g(\cdot | \scrF t) degenerates to a sublinear
operator.

2.2. Problem formulation . We formulate the Kalman--Bucy filtering problem
under uncertainty. For every \theta \in \Theta , under the probability measure P \theta \in \scrP ,

(2.4)

\left\{       
dx(t) = (B(t)x(t) + b(t) - \theta 1(t))dt+ dw\theta 1(t),
x(0) = x0,

dm(t) = (H(t)x(t) + h(t) - \theta 2(t))dt+ dv\theta 2(t),
m(0) = 0,

where x(\cdot ) \in L2
\BbbF (0, T ;\BbbR n) is the signal process and m(\cdot ) \in L2

\BbbF (0, T ;\BbbR m) is the observa-
tion process. The coefficients B(t) \in \BbbR n\times n, H(t) \in \BbbR m\times n, b(t) \in \BbbR n, and h(t) \in \BbbR m

are deterministic uniformly bounded functions in t \in [0, T ], and x0 \in \BbbR n is a given
constant vector. Set

\scrZ t = \sigma \{ m(s); 0 \leq s \leq t\} ,
which represents all the observable information up to time t. We want to calculate the
MMSE of the signal x(t) by solving the following worst-case minimum mean square
estimation problem:

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR n)

\scrE g(\| x(t) - \zeta (t)\| 2)(2.5)

= inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR n)

sup
P \theta \in \scrP 

[EP \theta (\| x(t) - \zeta (t)\| 2),+\alpha 0,t(P
\theta )],

where L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR n) is the set of all the \BbbR n-valued (2 + \epsilon ) integrable \scrZ t-measurable
random variables and 0 < \epsilon < 1.

Definition 2.5. If \^x(t) \in L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR n) satisfies

\scrE g(\| x(t) - \^x(t)\| 2) = inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR n)

\scrE g(\| x(t) - \zeta (t)\| 2),

then we call \^x(t) the MMSE of x(t).
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3. Kalman--Bucy filtering under \bfitg -expectation. In this section, we calcu-
late the MMSE \^x(t) of (2.5) for t \in [0, T ]. Without loss of generality, all the statements
in this section are only proved in the one-dimensional case, i.e., n = m = 1.

Lemma 3.1. The set \{ dP \theta 

d\BbbP : P \theta \in \scrP \} \subset L1+ 2
\epsilon (\Omega ,\scrF ,\BbbP ) is \sigma (L1+ 2

\epsilon (\Omega ,\scrF ,\BbbP ),
L1+ \epsilon 

2 (\Omega ,\scrF ,\BbbP ))-compact, and \scrP is convex.

Proof. Since \theta is bounded, by Theorem 5.3 in section 5, the set \{ dP \theta 

d\BbbP : P \theta \in \scrP \} 
is bounded in norm \| \cdot \| 1+ 2

\epsilon 
. Next, we need to prove that this set is \sigma (L1+ 2

\epsilon (\Omega ,\scrF ,\BbbP ),
L1+ \epsilon 

2 (\Omega ,\scrF ,\BbbP ))-closed.
From Theorem 4.1 of Chapter 1 in Simons [37], we take a sequence \{ f\theta n(T )\} n\geq 1

\subset \{ dP \theta 

d\BbbP : P \theta \in \scrP \} such that \{ f\theta n(T )\} n\geq 1 is weakly convergence to \=f(T ), where
\{ \theta n\} n\geq 1 is generator of \{ f\theta n(T )\} n\geq 1. Based on the compactness of set \Theta , we can
take a subsequence \{ \theta nk

\} k\geq 1 of \{ \theta n\} n\geq 1 such that \theta nk
 - \rightarrow L2

\BbbF ([0,T ],\BbbP )
\=\theta , where \theta nk

=

(\theta nk,1, \theta nk,2) \in \Theta , \=\theta = (\=\theta 1, \=\theta 2) \in \Theta .
Let\left\{             

\~f(T ) = exp
\bigl( 
 - 
\int T

0
\=\theta 1(t)dw(t) - 1

2

\int T

0
| \=\theta 1(t)| 2dt - 

\int T

0
\=\theta 2(t)dv(t)

 - 1
2

\int T

0
| \=\theta 2(t)| 2dt

\bigr) 
,

H(\theta nk
) =  - 

\int T

0
\theta nk,1(t)dw(t) - 1

2

\int T

0
| \theta nk,1(t)| 2dt - 

\int T

0
\theta nk,2(t)dv(t)

 - 1
2

\int T

0
| \theta nk,2(t)| 2dt,

H(\=\theta ) =  - 
\int T

0
\=\theta 1(t)dw(t) - 1

2

\int T

0
| \=\theta 1(t)| 2dt - 

\int T

0
\=\theta 2(t)dv(t) - 1

2

\int T

0
| \=\theta 2(t)| 2dt.

After a short calculation, we have limk\rightarrow \infty \BbbE [(H(\theta nk
)  - H(\=\theta ))2] = 0. Based

on Theorem 5.6 in section 5, it results in that f\theta nk (T )
\BbbP  - \rightarrow \~f(T ). By Theorem 5.3

in section 5, for any given constant r > 1, we have \BbbE [f\theta nk (T )]K \leq M , where

K = (1 + 2
\epsilon )r and M = exp((K2  - K)\mu 2T ). Then, \{ | f\theta nk (T )| 1+ 2

\varepsilon \} k\geq 1 is uniformly

integrable. Therefore, f\theta nk (T )  - \rightarrow 
L

1+ 2
\epsilon 

\scrF (\BbbP )
\~f(T ). Further, based on the uniqueness of

the limit, it reduces that \~f(T ) = \=f(T ) \in \{ dP \theta 

d\BbbP : P \theta \in \scrP \} . Then, the set \{ dP \theta 

d\BbbP : P \theta \in 
\scrP \} is \sigma (L1+ 2

\epsilon (\Omega ,\scrF ,\BbbP ), L1+ \epsilon 
2 (\Omega ,\scrF ,\BbbP ))-compact.

Let \theta 1 = (\theta 11, \theta 
1
2)

\intercal and \theta 2 = (\theta 21, \theta 
2
2)

\intercal belong to \Theta . f\theta 1

and f\theta 2

denote the
corresponding exponential martingales: for t \in [0, T ],

f\theta i

(t) = exp

\biggl( \int t

0

\theta i1(s)dw(s) - 
1

2

\int t

0

(\theta i1(s))
2ds+

\int t

0

\theta i2(s)dv(s) - 
1

2

\int t

0

(\theta i2(s))
2ds

\biggr) 
which satisfies

df\theta i

(t) = f\theta i

(t)(\theta i1(t)dw(t) + \theta i2(t)dv(t)), i = 1, 2.

Let \lambda 1 and \lambda 2 be nonnegative constants which belong to (0, 1) with \lambda 1 + \lambda 2 = 1.
Define \left\{   \theta \lambda 1 (t) =

\lambda 1\theta 
1
1(t)f

\theta 1 (t)+\lambda 2\theta 
2
1(t)f

\theta 2 (t)

\lambda 1f\theta 1 (t)+\lambda 2f\theta 2 (t)
,

\theta \lambda 2 (t) =
\lambda 1\theta 

1
2(t)f

\theta 1 (t)+\lambda 2\theta 
2
2(t)f

\theta 2 (t)

\lambda 1f\theta 1 (t)+\lambda 2f\theta 2 (t)
.

It is easy to verify that

d(\lambda 1f
\theta 1

(t) + \lambda 2f
\theta 2

(t)) = (\lambda 1f
\theta 1

(t) + \lambda 2f
\theta 2

(t))(\theta \lambda 1 (t)dw(t) + \theta \lambda 2 (t)dv(t)).

Since f\theta i

(t) > 0, i = 1, 2, the process \theta \lambda = (\theta \lambda 1 , \theta 
\lambda 
2 )

\intercal belongs to \Theta . Therefore, it
results in that the set \scrP is convex. This completes the proof.
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Lemma 3.2. The penalty term \alpha 0,T (P
\theta ) is a concave functional on \scrP .

Proof. Let \theta 1 = (\theta 11, \theta 
1
2)

\intercal and \theta 2 = (\theta 21, \theta 
2
2)

\intercal belong to \Theta . f\theta 1

and f\theta 2

denote
the exponential martingales, respectively, as in Lemma 3.1. By Lemma 3.1, the

exponential martingale (\lambda 1
dP \theta 1

d\BbbP + \lambda 2
dP \theta 2

d\BbbP ) is generated by \theta \lambda = (\theta \lambda 1 , \theta 
\lambda 
2 ). It yields

that

\alpha 0,T (\lambda 1P
\theta 1

+ \lambda 2P
\theta 2

) = \BbbE 

\Biggl[ 
(\lambda 1f

\theta 1

(T ) + \lambda 2f
\theta 2

(T ))

\int T

0

G(t, \theta \lambda 1 (t), \theta 
\lambda 
2 (t))dt

\Biggr] 
.

Since G(t, \cdot , \cdot ) is a concave function, we have

\alpha 0,T (\lambda 1P
\theta 1

+ \lambda 2P
\theta 2

)

\geq \BbbE 

\Biggl[ 
(\lambda 1f

\theta 1

(T ) + \lambda 2f
\theta 2

(T ))

\Biggl( \int T

0

\lambda 1f
\theta 1

(t)

\lambda 1f\theta 1(t) + \lambda 2f\theta 2(t)
G(t, \theta 11(t), \theta 

1
2(t)

\Biggr) 

+

\int T

0

\lambda 2f
\theta 2

(t)

\lambda 1f\theta 1(t) + \lambda 2f\theta 2(t)
G(t, \theta 21(t), \theta 

2
2(t)))dt

\Biggr] 

= \BbbE 

\Biggl[ \Biggl( \int T

0

\lambda 1f
\theta 1

(t)G(t, \theta 11(t), \theta 
1
2(t)) +

\int T

0

\lambda 2f
\theta 2

(t)G(t, \theta 21(t), \theta 
2
2(t))

\Biggr) 
dt

\Biggr] 

= \BbbE 

\Biggl[ 
\lambda 1f

\theta 1

(T )

\int T

0

G(t, \theta 11(t), \theta 
1
2(t))dt

\Biggr] 
+ \BbbE 

\Biggl[ 
\lambda 2f

\theta 2

(T )

\int T

0

G(t, \theta 21(t), \theta 
2
2(t))dt

\Biggr] 
= \lambda 1\alpha 0,T (P

\theta 1

) + \lambda 2\alpha 0,T (P
\theta 2

).

Therefore, the penalty term \alpha 0,T (P
\theta ) is a concave functional on \scrP . This completes

the proof.

Remark 3.3. It is easy to check that for any t \in [0, T ], \alpha 0,t(P
\theta ) is a concave

functional on \scrP and

\alpha 0,t(P
\theta ) = \BbbE 

\biggl[ 
f\theta (T ) \cdot 

\int t

0

G(s, \theta 1(s), \theta 2(s))ds

\biggr] 
= \BbbE 

\biggl[ 
f\theta (t) \cdot 

\int t

0

G(s, \theta 1(s), \theta 2(s))ds

\biggr] 
.

By abuse of notation, we sometimes write \alpha 0,t(f
\theta ) instead of \alpha 0,t(P

\theta ).

Denote the generators of (gm(t))t\in [0,T ],m = 1, 2, ... and (f\ast (t))t\in [0,T ] by \theta m(t) =
(\theta m1 (t), \theta m2 (t)) \in \Theta and \theta \ast (t) = (\theta \ast 1(t), \theta 

\ast 
2(t)) \in \Theta , respectively; i.e., for 0 \leq t \leq T ,

gm(t) = exp

\biggl( \int t

0

\theta m1 (s)dw(s) - 1

2

\int t

0

(\theta m1 (s))2ds+

\int t

0

\theta m2 (s)dv(s) - 1

2

\int t

0

(\theta m2 (s))2ds

\biggr) 
,

f\ast (t) = exp

\biggl( \int t

0

\theta \ast 1(s)dw(s) - 
1

2

\int t

0

(\theta \ast 1(s))
2ds+

\int t

0

\theta \ast 2(s)dv(s) - 
1

2

\int t

0

(\theta \ast 2(s))
2ds

\biggr) 
.

Lemma 3.4. Suppose that the stochastic processes (gm(t))t\in [0,T ],m = 1, 2, . . . and
(f\ast (t))t\in [0,T ] are exponential martingales with respect to the filtration \BbbF and (gm(T ) - 
f\ast (T ))  - \rightarrow L2

\scrF (\BbbP ) 0. Then for any 0 \leq t \leq T , we have

(\theta mi (t) - \theta \ast i (t))
L2

\scrF (\BbbP ) -  -  -  - \rightarrow 0, i = 1, 2.
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Proof. We want to prove that (\theta m) converges to \theta \ast . Since gm(\cdot ) and f\ast (\cdot ) are
martingales and gm(T )  - \rightarrow L2

\scrF (\BbbP ) f
\ast (T ), it is easy to verify that gm(t)  - \rightarrow L2

\scrF (\BbbP ) f
\ast (t)

for any t \in [0, T ]. Applying It\^o's formula to (gm(t) - f\ast (t))2, we have

d(gm(t) - f\ast (t))2

= 2(gm(t) - f\ast (t))[(gm(t)\theta m1 (t) - f\ast (t)\theta \ast 1(t))dw(t) + (gm(t)\theta m2 (t)

 - f\ast (t)\theta \ast 2(t))dv(t)] + (gm(t)\theta m1 (t) - f\ast (t)\theta \ast 1(t))
2dt+ (gm(t)\theta m2 (t)

 - f\ast (t)\theta \ast 2(t))
2dt.

Taking expectation on both sides,

\BbbE [(gm(T ) - f\ast (T ))2] = \BbbE 

\Biggl[ \int T

0

(gm(t)\theta m1 (t) - f\ast (t)\theta \ast 1(t))
2dt

\Biggr] 
(3.1)

+ \BbbE 

\Biggl[ \int T

0

(gm(t)\theta m2 (t) - f\ast (t)\theta \ast 2(t))
2dt

\Biggr] 
.

Since limm\rightarrow \infty \BbbE [(gm(T ) - f\ast (T ))2] = 0, it yields that

(3.2) lim
m\rightarrow \infty 

\BbbE 

\Biggl[ \int T

0

(gm(t)\theta mi (t) - f\ast (t)\theta \ast i (t))
2dt

\Biggr] 
= 0, i = 1, 2.

Note that

\BbbE 

\Biggl[ \int T

0

(gm(t)\theta m1 (t) - f\ast (t)\theta \ast 1(t))
2dt

\Biggr] 

= \BbbE 
\int T

0

[(f\ast (t) - gm(t))2(\theta \ast 1(t))
2 + (gm(t))2(\theta \ast 1(t) - \theta m1 (t))2

+ 2(f\ast (t) - gm(t))gm(t)\theta \ast 1(t)(\theta 
\ast 
1(t) - \theta m1 (t))]dt.

Because gm(t)  - \rightarrow L2
\scrF (\BbbP ) f

\ast (t) and \theta is bounded, we have

lim
m\rightarrow \infty 

\BbbE [(f\ast (t) - gm(t))2(\theta \ast 1(t))
2] = 0,

lim
m\rightarrow \infty 

\BbbE [(f\ast (t) - gm(t))gm(t)\theta \ast 1(t)(\theta 
\ast 
1(t) - \theta m1 (t))] = 0.

Therefore, limm\rightarrow \infty \BbbE [(gm(t))2(\theta \ast 1(t) - \theta m1 (t))2] = 0. It results in that (gm(t))2(\theta \ast 1(t) - 
\theta m1 (t))2 \rightarrow \BbbP 0. Since gm(t) \rightarrow \BbbP f\ast (t), we have (\theta \ast 1(t)  - \theta m1 (t))2 \rightarrow \BbbP 0. Due to the
boundedness of \theta , we obtain (\theta \ast 1(t)  - \theta m1 (t))  - \rightarrow L2

\scrF (\BbbP ) 0. Similarly, we can obtain

(\theta \ast 2(t) - \theta m2 (t))  - \rightarrow L2
\scrF (\BbbP ) 0. This completes the proof.

Lemma 3.5. \alpha 0,t(f
\theta ) is an upper semicontinuous function on \{ dP \theta 

d\BbbP : P \theta \in \scrP \} .

Proof. Take a sequence \{ f\theta n(T )\} n\geq 1 \in \{ dP \theta 

d\BbbP : P \theta \in \scrP \} such that f\theta n(T )  - \rightarrow L2
\scrF (\BbbP )

f\ast (T ). Then, we can take a subsequence \{ f\theta nk (T )\} k\geq 1 \subset \{ f\theta n(T )\} n\geq 1 such that
f\theta nk (T )  - \rightarrow \BbbP  - a.s. f

\ast (T ), where \theta nk \in \Theta is the generator of f\theta nk (T ) for any k \geq 1 and
\theta nk \rightarrow \BbbP \theta \ast by Lemma 3.4. Next, take a subsequence \{ \theta nkl \} l\geq 1 \subset \{ \theta nk\} k\geq 1 such that

\theta nkl  - \rightarrow \BbbP  - a.s. \theta 
\ast and denote \{ f\theta nkl (T )\} l\geq 1 by the exponential martingale sequence
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with respect to generator \{ \theta nkl \} l\geq 1, then f
\theta nkl (T )  - \rightarrow \BbbP  - a.s. f

\ast (T ). Therefore, the
following relations hold:

lim sup
n\rightarrow \infty 

\alpha 0,t(f
\theta n) = lim sup

l\rightarrow \infty 
\alpha 0,t(f

\theta nkl )

= lim sup
l\rightarrow \infty 

\BbbE 
\biggl[ 
f
\theta nkl (T ) \cdot 

\int t

0

G(s, \theta 
nkl
1 (s), \theta 

nkl
2 (s))ds

\biggr] 
= lim sup

l\rightarrow \infty 
\BbbE 
\biggl[ 
f
\theta nkl (T ) \cdot 

\int t

0

inf
z1\in \BbbR ,z2\in \BbbR 

[g(s, z1, z2) + \langle z1, \theta 
nkl
1 (s)\rangle , \langle z2, \theta 

nkl
2 (s)\rangle ]ds

\biggr] 
\leq \BbbE 

\biggl[ \int t

0

lim sup
l\rightarrow \infty 

inf
z1\in \BbbR ,z2\in \BbbR 

f
\theta nkl (T ) \cdot [g(s, z1, z2) + \langle z1, \theta 

nkl
1 (s)\rangle , \langle z2, \theta 

nkl
2 (s)\rangle ]ds

\biggr] 
\leq \BbbE 

\biggl[ \int t

0

inf
z1\in \BbbR ,z2\in \BbbR 

lim sup
l\rightarrow \infty 

f
\theta nkl (T ) \cdot [g(s, z1, z2) + \langle z1, \theta 

nkl
1 (s)\rangle , \langle z2, \theta 

nkl
2 (s)\rangle ]ds

\biggr] 
= \BbbE 

\biggl[ \int t

0

inf
z1\in \BbbR ,z2\in \BbbR 

f\ast (T ) \cdot [g(s, z1, z2) + \langle z1, \theta \ast 1(s)\rangle , \langle z2, \theta \ast 2(s)\rangle ]ds
\biggr] 

= \alpha 0,t(f
\ast ).

This completes the proof.

In the following, we prove that the worst-case prior P \theta \ast 
exists.

Theorem 3.6. For a given t \in [0, T ], there exists a \theta \ast \in \Theta such that

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

\scrE g[(x(t) - \zeta (t))2] = sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta )]

(3.3)

= inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta \ast [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta \ast 
)].

Proof. Firstly, we prove the first equality. According to Lemmas 3.1, 3.2, and 3.5,
the function \BbbE [f\theta (t)(x(t) - \zeta (t))2] +\alpha 0,t(f

\theta ) is upper semicontinuous with respect to
f\theta (t); then the original robust estimation problem (2.5) satisfies all the conditions in
Theorem 5.1. Therefore, the first equality is verified.

Secondly, we prove the second equality. Choose a sequence \{ \theta n\} , n = 1, 2, . . .
such that

lim
n\rightarrow \infty 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta n [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta n

)](3.4)

= sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[\alpha 0,t(P
\theta ) + EP \theta [(x(t) - \zeta (t))2]].

Set f\theta n

(T ) = dP \theta n

d\BbbP . By the Koml\'os theorem A.3.4 in [36], there exist a subsequence

\{ f\theta nk (T )\} k\geq 1 of \{ f\theta n

(T )\} n\geq 1 and an f\ast (T ) \in L1(\Omega ,\scrF ,\BbbP ) such that

(3.5) lim
m\rightarrow \infty 

1

m

m\sum 
k=1

f\theta nk
(T ) = f\ast (T ), \BbbP  - a.s.

Let gm(T ) = 1
m

\sum m
k=1 f

\theta nk (T ). We have gm(T )  - \rightarrow \BbbP  - a.s. f
\ast (T ). By Theorem 5.3

in section 5, for any given constant p > 1 and m \geq 1, we have \BbbE (gm(T ))K \leq M ,

where K = (1+ 2
\epsilon )p and M = exp((K2  - K)\mu 2T ). Then, \{ | gm(T )| 1+ 2

\varepsilon : m = 1, 2, . . .\} 
is uniformly integrable. Therefore, it results in that gm(T )  - \rightarrow 

L
1+ 2

\epsilon 
\scrF (\BbbP )

f\ast (T ) and
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f\ast (T ) \in L1+ 2
\epsilon (\Omega ,\scrF ,\BbbP ). According to the convexity and weak compactness of the set

\{ dP \theta 

d\BbbP : P \theta \in \scrP \} , there exists a \theta \ast such that dP \theta \ast 

d\BbbP = f\ast (T ).

Then we prove that the probability measure P \theta \ast 
with respect to obtained gener-

ator \theta \ast satisfies (3.3). Based on (3.4) and (3.5), we have

sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta )](3.6)

= lim
n\rightarrow \infty 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[\BbbE [fP \theta n
(T )(x(t) - \zeta (t))2] + \alpha 0,t(P

\theta n)]

= lim
k\rightarrow \infty 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[\BbbE [fP
\theta nk (T )(x(t) - \zeta (t))2] + \alpha 0,t(P

\theta nk )]

= lim
m\rightarrow \infty 

1

m

m\sum 
k=1

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[\BbbE [fP
\theta nk (T )(x(t) - \zeta (t))2] + \alpha 0,t(P

\theta nk )]

\leq lim inf
m\rightarrow \infty 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

1

m

m\sum 
k=1

[\BbbE [fP
\theta nk (T )(x(t) - \zeta (t))2] + \alpha 0,t(P

\theta nk )]

\leq lim inf
m\rightarrow \infty 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[\BbbE [gm(T )(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta m

)],

where the last inequality is due to the concavity of \alpha 0,t(\cdot ).
According to (3.6) and Lemmas 3.4 and 3.5, it results in that

sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta )](3.7)

\geq inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta \ast [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta \ast 
)]

\geq inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

\biggl[ 
\BbbE [ lim

m\rightarrow \infty 
gm(T )(x(t) - \zeta (t))2] + lim sup

m\rightarrow \infty 
\alpha 0,t(f

\theta m

)

\biggr] 
= inf

\zeta (t)\in L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR )

\biggl[ 
\BbbE [lim sup

m\rightarrow \infty 
gm(T )(x(t) - \zeta (t))2] + lim sup

m\rightarrow \infty 
\alpha 0,t(f

\theta m

)

\biggr] 

\geq lim sup
m\rightarrow \infty 

\Biggl\{ 
inf

\zeta (t)\in L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR )
[\BbbE [gm(T )(x(t) - \zeta (t))2] + \alpha 0,t(f

\theta m

)]

\Biggr\} 
\geq sup

P \theta \in \scrP 
inf

\zeta (t)\in L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR )
[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P

\theta )].

Therefore,

sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta )]

= inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta \ast [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta \ast 
)].

By minimax theorem (Theorem 5.1 in section 5), it implies that

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

\scrE g[(x(t) - \zeta (t))2] = sup
P \theta \in \scrP 

inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta )]

= inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta \ast [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta \ast 
)].

This completes the proof.
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For the obtained \theta \ast (t) = (\theta \ast 1(t), \theta 
\ast 
2(t)) in Theorem 3.6, set \widehat \theta \ast i (t) = EP \theta \ast [\theta \ast i (t)| \scrZ t],

i = 1, 2.

Theorem 3.7. Set P (t) = EP \theta \ast [(x(t) - \^x(t))2]. The MMSE \^x(t) of (2.5) equals
EP \theta \ast [x(t)| \scrZ t] and satisfies the following equation:
(3.8)\Biggl\{ 

d\^x(t) = (B(t)\^x(t) + b(t) - \widehat \theta \ast 1(t))dt+ (P (t)H(t) - \widehat x(t)\theta \ast 2(t) + \^x(t)\widehat \theta \ast 2(t))d\^I(t),
\^x(0) = x0,

where \theta \ast is obtained in Theorem 3.6, \widehat x(t)\theta \ast 2(t) := EP \theta \ast [x(t)\theta \ast 2(t)| \scrZ t] and the so called

innovation process \^I(t) := m(t)  - 
\int t

0
(H(s)\^x(s) + h(s)  - \widehat \theta \ast 2(s))ds, 0 \leq t \leq T is a

\scrZ t-measurable Brownian motion. The variance of the estimation error P (t) satisfies
the following equation:

(3.9)

\left\{     
dP (t)
dt =  - EP \theta \ast [(P (t)H(t) - \widehat x(t)\theta \ast 2(t) + \^x(t)\widehat \theta \ast 2(t))(t)(H(t)P (t) - \widehat \theta \ast 2(t)x(t)

+ \widehat \theta \ast 2(t)\^x(t))] + 2EP \theta \ast [ - \widehat x(t)\theta \ast 1(t) + \^x(t)\widehat \theta \ast 1(t)] + 2B(t)P (t) + 1,
P (0) = 0.

Proof. For the obtained optimal \theta \ast (t) = (\theta \ast 1(t), \theta 
\ast 
2(t)) in Theorem 3.6, the system

(2.4) and (2.5) can be reformulated correspondingly under P \theta \ast 
. In more detail, on the

filtered probability space (\Omega ,\scrF , \{ \scrF t\} 0\leq t\leq T , P
\theta \ast 
), the processes x(\cdot ) and m(\cdot ) satisfy

the following equations:

(3.10)

\left\{       
dx(t) = (B(t)x(t) + b(t) - \theta \ast 1(t))dt+ dw\theta \ast 

1 (t),
x(0) = x0,

dm(t) = (H(t)x(t) + h(t) - \theta \ast 2(t))dt+ dv\theta 
\ast 
2 (t),

m(0) = 0.

We solve the minimum mean square estimation problem

(3.11) inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

[EP \theta \ast [(x(t) - \zeta (t))2] + \alpha 0,t(P
\theta \ast 
)].

Since \alpha 0,t(P
\theta \ast 
) is a constant, we only need to consider the following optimization

problem:

(3.12) inf
\zeta (t)\in L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR )

EP \theta \ast [(x(t) - \zeta (t))2].

In [31], Liptser and Shiryaev studied the optimal estimator of the following prob-
lem:

(3.13) inf
\zeta (t)\in L2

\scrZ t
(\Omega ,P \theta \ast ,\BbbR )

EP \theta \ast [(x(t) - \zeta (t))2].

By Theorem 8.1 in [31], the optimal estimator \^x(t) = EP \theta \ast [x(t)| \scrZ t] of (3.13) satisfies
(3.8). Since B(t), H(t), b(t), and h(t) are uniformly bounded, deterministic functions,
and \theta \ast is bounded by Theorem 6.3 (see Chapter 1 in [41]), and the solution \^x(t) to
(3.8) also belongs to L2+\epsilon 

\scrZ t
(\Omega ,\BbbP ,\BbbR ). It yields that \^x(t) is the optimal solution of

problem (3.12) at time t \in [0, T ]. This completes the proof.
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Corollary 3.8. If \theta \ast (t) is adapted to \scrZ t, then \^x(t) satisfies the following equa-
tion:

(3.14)

\biggl\{ 
d\^x(t) = (B(t)\^x(t) + b(t) - \theta \ast 1(t))dt+ P (t)H(t)d\^I(t),
\^x(0) = x0,

where P (t) satisfies the following Riccati equation:

(3.15)

\biggl\{ 
dP (t)
dt = 2B(t)P (t) - P 2(t)H(t)2 + 1,

P (0) = 0.

According to the classical Kalman--Bucy filer theory, the optimal filter \=x(t) =
\BbbE [x(t)| \scrZ t] is the solution of the following equation:

(3.16)

\biggl\{ 
d\=x(t) = (B(t)\=x(t) + b(t))dt+ P (t)H(t)dI(t),
\=x(0) = x0,

where

I(t) = m(t) - 
\int t

0

(H(s)\=x(s) + h(s))ds.

Corollary 3.9. Let A(t, s) = exp(
\int t

s
(B(r) - P (r)(H(r))2)dr) \forall 0 \leq s < t \leq T .

If the optimal \theta \ast (t) is adapted to subfiltration \scrZ t, with (3.8) and (3.16), then the
optimal estimator \^x(t) for any time t \in [0.T ] can be expressed as

(3.17) \^x(t) = \=x(t) +

\int t

0

(P (s)H(s)\theta \ast 2(s) - \theta \ast 1(s))A(t, s)ds,

where \=x(t) is defined by (3.16).

Proof. Firstly, we conjecture \^x(t) has the following structure:

\^x(t) = \=x(t) +M(t),

where M(t) is the variable to be determined.
Secondly, based on (3.14) and (3.16), we can verify that M(t) satisfies the follow-

ing ODE after a simple calculation:

(3.18)

\biggl\{ 
dM(t) = (B(t) - P (t)H(t)2)M(t)dt+ (P (t)H(t)\theta \ast 2(t) - \theta \ast 1(t))dt,
M(0) = 0.

It reduces that

M(t) =

\int t

0

(P (s)H(s)\theta \ast 2(s) - \theta \ast 1(s))A(t, s)ds.

This completes the proof.

Remark 3.10. In [34], the authors gave a remark to explain that they cannot
explicitly evaluate the optimal uncertainty parameter and estimator about the USS
in the Kalman filter sense. In our context, it is still difficult to give the construction of
\theta \ast explicitly. Based on this reason, we come down to using the numerical calculation
methods to solve this problem in the future.

D
ow

nl
oa

de
d 

07
/2

0/
21

 to
 5

8.
19

4.
18

1.
15

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2682 S. JI, C. KONG, C. SUN, AND J. ZHANG

4. MMSE under general convex operators on \bfitL \bfitp 
\bfscrF (\BbbP ). In section 3, we

boil down the calculation of the Kalman--Bucy filter under uncertainty to solving
a minimum mean square estimation problem under the convex g-expectation. The
worst-case prior P \theta \ast 

is obtained, and the corresponding filtering equation (3.8) is
deduced.

It is an interesting question whether there are similar results for general con-
vex operators. So in this section, we investigate the minimum mean square estima-
tion problem under general convex operators on Lp

\scrF (\BbbP ) and obtain the existence and
uniqueness results of the MMSE.

4.1. General convex operators on \bfitL \bfitp 
\bfscrF (\BbbP ). For a given probability space

(\Omega ,\scrF ,\BbbP ), we denote the set of all \scrF -measurable pth power integrable random variables
by Lp(\Omega ,\scrF ,\BbbP ). Sometimes we use Lp

\scrF (\BbbP ) for short. Let \scrC be a sub \sigma -algebra of \scrF .
Lp
\scrC (\BbbP ) denotes the set of all the pth power integrable \scrC -measurable random variables.

In this paper, we only consider the case that 1 < p \leq 2.
Let \scrM denote the set of probability measures absolutely continuous with respect

to \BbbP . For P \in \scrM , we will use fP to denote the Radon--Nikodym derivative dP
d\BbbP 

and EP [\cdot ] to denote the expectation under P . Especially, the expectation under \BbbP is
denoted as \BbbE [\cdot ]. For a sub \sigma -algebra \scrC of \scrF and P \in \scrM , define fP

\scrC = \BbbE [fP | \scrC ].
Definition 4.1. A convex operator is an operator \rho (\cdot ) : Lp

\scrF (\BbbP ) \mapsto \rightarrow \BbbR satisfying
(i) monotonicity: for any \xi 1, \xi 2 \in Lp

\scrF (\BbbP ), \rho (\xi 1) \geq \rho (\xi 2) if \xi 1 \geq \xi 2;
(ii) constant invariance: \rho (\xi + c) = \rho (\xi ) + c for any \xi \in Lp

\scrF (\BbbP ) and c \in \BbbR ;
(iii) convexity: for any \xi 1, \xi 2 \in Lp

\scrF (\BbbP ) and \lambda \in [0, 1], \rho (\lambda \xi 1 + (1  - \lambda )\xi 2) \leq 
\lambda \rho (\xi 1) + (1 - \lambda )\rho (\xi 2).

Definition 4.2. A convex operator \rho (\cdot ) is called normalized if \rho (0) = 0.

Remark 4.3. In this paper, we will always assume the convex operator is normal-
ized. Moreover, if we define \rho \prime (\xi ) = \rho ( - \xi ), then \rho \prime (\cdot ) is a convex risk measure on
Lp
\scrF (\BbbP ).

If \rho (\cdot ) is a convex operator, then by Proposition 2.10 and Theorem 2.11 in [28], for
any random variable \xi \in Lp

\scrF (\BbbP ), there exists a set \scrP such that \rho (\cdot ) can be represented
as

\rho (\xi ) = sup
P\in \scrP 

[EP [\xi ] - \alpha (P )],

where \alpha (P ) := sup\zeta \in \scrA \rho 
EP [\zeta ], \scrA \rho := \{ \zeta \in Lp

\scrF (\BbbP ); \rho (\zeta ) \leq 0\} called acceptance set,

\scrP : = \{ P \in \scrM ; fP \in Lq
\scrF (\BbbP ), \alpha (P ) < \infty \} . Moreover, \scrD := \{ fP ; P \in \scrP \} is norm-

bounded in Lq
\scrF (\BbbP ) and \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP ))-compact, where \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP )) denotes the

weak topology defined on Lq
\scrF (\BbbP ) and

1
p +

1
q = 1. The set \scrP is called the representation

set of \rho (\cdot ). Since \alpha (\cdot ) is a convex function defined on \scrM , \scrP is a convex set.

Remark 4.4. Note that \alpha (P ) = sup\zeta \in \scrA \rho 
EP [\zeta ] = sup\zeta \in \scrA \rho 

\BbbE [fP \zeta ]. By abuse of

notation, we sometimes write \alpha (fP ) instead of \alpha (P ).

Definition 4.5. The set \scrP is called stable if for any element P \in \scrP and any sub

\sigma -algebra \scrC of \scrF , fP

fP
\scrC 

still lies in the set \scrD .

Definition 4.6. The convex operator \rho (\cdot ) is called regular if all the elements in
set \scrP are equivalent to \BbbP .

Definition 4.7. A convex operator \rho (\cdot ) is called stable if its representation set
\scrP is stable.
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For a given \xi \in L4p
\scrF (\BbbP ), when we only know the information \scrC , we want to find

the MMSE of \xi under the convex operator \rho (\cdot ). In more detail, we will solve the
following optimization problem.

Problem: For a given \xi \in L4p
\scrF (\BbbP ), find a \^\eta \in L2p

\scrC (\BbbP ) such that

(4.1) \rho ((\xi  - \^\eta )2) = inf
\eta \in L2p

\scrC (\BbbP )
\rho ((\xi  - \eta )2).

The optimal solution \^\eta of (4.1) is called the MMSE, and we will denote it by
\rho (\xi | \scrC ).

Remark 4.8. If we set \scrC = \scrZ t and p = 1 + \epsilon 
2 with \epsilon \in (0, 1), then L2p

\scrC (\BbbP ) is just

the space L2+\epsilon 
\scrZ t

(\Omega ,\BbbP ,\BbbR n) in subsection 2.2.

4.2. Existence and uniqueness results. In this section, we study the exis-
tence and uniqueness of the MMSE for (4.1). We first give the following assumption.

Assumption 4.9. The convex operator \rho (\cdot ) is stable and regular.

4.2.1. Existence.

Lemma 4.10. For any given real number \gamma \geq 2, if \xi \in L\gamma p
\scrF (\BbbP ), then we have

supP\in \scrP EP [| \xi | 
\gamma p
2 ] < \infty .

Proof. Since \{ fP ;P \in \scrP \} is norm-bounded in Lq
\scrF (\BbbP ) and 1 < p \leq 2, we have

sup
P\in \scrP 

EP [| \xi | 
\gamma p
2 ] = sup

P\in \scrP 
\BbbE [fP | \xi | 

\gamma p
2 ] \leq sup

P\in \scrP 
| | fP | | Lq | | \xi 

\gamma p
2 | | Lp

\leq sup
P\in \scrP 

| | fP | | Lq [\BbbE [| \xi | \gamma p]] 12 < \infty .

This completes the proof.

Lemma 4.11. Suppose that Assumption 4.9 holds. Then for any P \in \scrP , \xi \in 
Lp
\scrF (\BbbP ), and sub \sigma -algebra \scrC of \scrF , there exists a \=P \in \scrP such that E \=P [\xi ] = \BbbE [EP [\xi | \scrC ]].

Proof. It is obvious that

\BbbE [EP [\xi | \scrC ]] = \BbbE 
\biggl[ 
\BbbE [\xi fP | \scrC ]
\BbbE [fP | \scrC ]

\biggr] 
= \BbbE [\BbbE 

\biggl[ 
\xi 
fP

fP
\scrC 
| \scrC ]
\biggr] 
= \BbbE 

\biggl[ 
\xi 
fP

fP
\scrC 

\biggr] 
.

By Definition 4.5, there exists a \=P \in \scrP such that d \=P
d\BbbP = fP

fP
\scrC 

which implies that

E \=P [\xi ] = \BbbE [EP [\xi | \scrC ]]. This completes the proof.

Proposition 4.12. Suppose that Assumption 4.9 holds. If \xi \in L4p
\scrF (\BbbP ), then there

exists a constant M such that for any probability measure P \in \scrP ,

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = inf

\eta \in L2p,M
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )],

where L2p,M
\scrC (\BbbP ) denotes all the elements in L2p

\scrC (\BbbP ) which are norm-bounded by the
constant M .

Proof. Set \BbbG = \{ EP [\xi | \scrC ];P \in \scrP \} . For any P \in \scrP , we have \BbbE [(EP [\xi | \scrC ])2p] \leq 
\BbbE [EP [\xi 

2p| \scrC ]]. By Lemma 4.11, there exists a \=P \in \scrP such that E \=P [\xi 
2p] = \BbbE [EP [\xi 

2p| \scrC ]].
By Lemma 4.10, there exists a constant M1 such that supP\in \scrP EP [\xi 

2p] \leq M1. Then

\BbbG \subset L2p,M
\scrC (\BbbP ), where M = M

1
2p

1 . By the project property of conditional expectations,

for any P \in \scrP and \eta \in L2p
\scrC (\BbbP ), we have that

EP [(\xi  - EP [\xi | \scrC ])2] \leq EP [(\xi  - \eta )2],
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which leads to

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] \geq inf

\eta \prime \in \BbbG 
[EP [(\xi  - \eta \prime )2] - \alpha (P )].

On the other hand, the inverse inequality is obviously true. Then the following
equality holds for any P \in \scrP :

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = inf

\eta \in \BbbG 
[EP [(\xi  - \eta )2] - \alpha (P )].

Since \BbbG \subset L2p,M
\scrC (\BbbP ) \subset L2p

\scrC (\BbbP ), it follows that

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = inf

\eta \in L2p,M
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )].

This completes the proof.

By Proposition 4.12, it is easy to see that

sup
P\in \scrP 

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = sup

P\in \scrP 
inf

\eta \in L2p,M
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )].

Lemma 4.13. \alpha (\cdot ) is a lower semicontinuous (l.s.c.) function on the topology
space (\scrD , \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP ))).

Proof. For any fixed random variable \zeta \in \scrA \rho , define \varphi (\zeta , f
P ) = \BbbE [fP \zeta ], where fP

belongs to \scrD . Then \varphi (\zeta , \cdot ) is a continuous function on the topology space
(\scrD , \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP ))). Take a sequence \{ fPn\} n\geq 1  - \rightarrow Lq

\scrF (\BbbP ) \=f , where \{ fPn\} n\geq 1 and
\=f all belong to the set \scrD ; then

lim inf
n\rightarrow \infty 

\alpha (fPn) = lim inf
n\rightarrow \infty 

sup
\zeta \in \scrA \rho 

\BbbE [fPn\zeta ] \geq sup
\zeta \in \scrA \rho 

lim inf
n\rightarrow \infty 

\BbbE [fPn\zeta ].

Next, take a subsequence \{ fPni\} i\geq 1 of \{ fPn\} n\geq 1 such that \{ fPni\} i\geq 1  - \rightarrow \BbbP  - a.s.
\=f ; we

then have
lim inf
n\rightarrow \infty 

\alpha (fPn) \geq \alpha ( \=f).

Therefore, \alpha (\cdot ) is an l.s.c. function on the topology space (\scrD , \sigma (Lq
\scrF (\BbbP ), L

p
\scrF (\BbbP ))).

This completes the proof.

For \xi \in L4p
\scrF (\BbbP ), \eta \in L2p

\scrC (\BbbP ), and P \in \scrP , define

l(\xi , \eta , fP ) = \BbbE [fP (\xi  - \eta )2] - \alpha (fP ).

Lemma 4.14. For any random variables \xi \in L4p
\scrF (\BbbP ) and \eta \in L2p

\scrC (\BbbP ), l(\xi , \eta , \cdot ) is an
upper semicontinuous (u.s.c.) function on the topology space (\scrD , \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP ))).

Proof. Since \xi \in L4p
\scrF (\BbbP ) and \eta \in L2p

\scrC (\BbbP ), then (\xi  - \eta )2 \in Lp
\scrF (\BbbP ) which im-

plies that \BbbE [fP (\xi  - \eta )2] is a continuous function with respect to fP on the topology
space (\scrD , \sigma (Lq

\scrF (\BbbP ), L
p
\scrF (\BbbP ))). By Lemma 4.13, \alpha (\cdot ) is an l.s.c. function on the topology

space (\scrD , \sigma (Lq
\scrF (\BbbP ), L

p
\scrF (\BbbP ))). Thus, l(\xi , \eta , \cdot ) is an u.s.c. function on the topology space

(\scrD , \sigma (Lq
\scrF (\BbbP ), L

p
\scrF (\BbbP ))). This completes the proof.

Proposition 4.15. Suppose that Assumption 4.9 holds. Then for a given \xi \in 
L4p
\scrF (\Omega ,\BbbP ), there exists a \^P \in \scrP such that

inf
\eta \in L2p,M

\scrC (\BbbP )
[E \^P [(\xi  - \eta )2] - \alpha ( \^P )] = sup

P\in \scrP 
inf

\eta \in L2p,M
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )],

where M is the constant given in Proposition 4.12.
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Proof. Define

\beta = sup
P\in \scrP 

inf
\eta \in L2p,M

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = sup

fP\in \scrD 
inf

\eta \in L2p,M
\scrC (\BbbP )

[\BbbE [fP (\xi  - \eta )2] - \alpha (fP )].

Take a sequence \{ fPn ;Pn \in \scrP \} n\geq 1 such that

inf
\eta \in L2p,M

\scrC (\BbbP )
[\BbbE [fPn(\xi  - \eta )2] - \alpha (fPn)] \geq \beta  - 1

2n
.

Since \scrD is a weakly compact set, we can take a subsequence \{ fPni \} i\geq 1 which weakly

converges to some f
\^P \in Lq

\scrF (\BbbP ). Therefore, \^P \in \scrP , and there exists a sequence \{ f \~Pi \in 
conv(fPni , fPni+1 , . . .)\} i\geq 1 such that f

\~Pi converges to f
\^P in Lq

\scrF (\BbbP )-norm by Theorem
5.4 in section 5, where conv(A)=\{ \Sigma n

i=1\alpha ixi| xi \in A, \alpha i > 0, \Sigma n
i=1\alpha i = 1, n \in \BbbN \} .

For any \eta \in L2p,M
\scrC (\BbbP ),

lim
i\rightarrow \infty 

\BbbE [| f \~Pi(\xi  - \eta )2  - f
\^P (\xi  - \eta )2| ] \leq lim

i\rightarrow \infty 
| | (f \~Pi  - f

\^P )| | Lq(\BbbP )| | (\xi  - \eta )2| | Lp(\BbbP ) = 0,

which leads to

lim
i\rightarrow \infty 

\BbbE [f \~Pi(\xi  - \eta )2] = \BbbE [f \^P (\xi  - \eta )2].

On the other hand, according to Lemma 4.14,  - \alpha (\cdot ) is an u.s.c. function. It
reduces that

 - \alpha (f
\^P ) \geq lim sup

i\rightarrow \infty 
( - \alpha (f

\~Pi)).

Then,

[\BbbE [f \^P (\xi  - \eta )2] - \alpha (f
\^P )] \geq lim sup

i\rightarrow \infty 
[\BbbE [[f \~Pi(\xi  - \eta )2] - \alpha (f

\~Pi)].

Since

[\BbbE [f \~Pi(\xi  - \eta )2] - \alpha (f
\~Pi)] \geq inf

\~\eta \in L2p,M
\scrC (\BbbP )

[\BbbE [f \~Pi(\xi  - \~\eta )2] - \alpha (f
\~Pi)]

for any \eta \in L2p,M
\scrC (\BbbP ), we have that

lim sup
i\rightarrow \infty 

[\BbbE [f \~Pi(\xi  - \eta )2] - \alpha (f
\~Pi)] \geq lim sup

i\rightarrow \infty 
inf

\~\eta \in L2p,M
\scrC (\BbbP )

[\BbbE [f \~Pi(\xi  - \~\eta )2] - \alpha (f
\~Pi)].

It yields that

inf
\eta \in L2p,M

\scrC (\BbbP )
[\BbbE [f \^P (\xi  - \eta )2] - \alpha (f

\^P )] \geq inf
\eta \in L2p,M

\scrC (\BbbP )
lim sup
i\rightarrow \infty 

[\BbbE [f \~Pi(\xi  - \eta )2] - \alpha (f
\~Pi)]

(4.2)

\geq lim sup
i\rightarrow \infty 

inf
\~\eta \in L2p,M

\scrC (\BbbP )
[\BbbE [f \~Pi(\xi  - \~\eta )2] - \alpha (f

\~Pi)].

As \alpha (\cdot ) is a convex function and f
\~Pi \in conv(fPni , fPni+1 , . . .), we have

(4.3) lim sup
i\rightarrow \infty 

inf
\~\eta \in L2p,M

\scrC (\BbbP )
[\BbbE [f \~Pi(\xi  - \~\eta )2] - \alpha (f

\~Pi)] \geq \beta .

Combining (4.2) and (4.3), we obtain the result.
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Corollary 4.16. Suppose that Assumption 4.9 holds. Then for a given \xi \in 
L4p
\scrF (\BbbP ), there exists a \^P \in \scrP such that

inf
\eta \in L2p

\scrC (\BbbP )
[E \^P [(\xi  - \eta )2] - \alpha ( \^P )] = sup

P\in \scrP 
inf

\eta \in L2p
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )].

Proof. Choose \^P as in Proposition 4.15. By Propositions 4.12 and 4.15, the
following relations hold

sup
P\in \scrP 

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )] = sup

P\in \scrP 
inf

\eta \in L2p,M
\scrC (\BbbP )

[EP [(\xi  - \eta )2] - \alpha (P )]

= inf
\eta \in L2p,M

\scrC (\BbbP )
[E \^P [(\xi  - \eta )2] - \alpha ( \^P )] = inf

\eta \in L2p
\scrC (\BbbP )

[E \^P [(\xi  - \eta )2] - \alpha ( \^P )].

This completes the proof.

Theorem 4.17 (existence theorem). Suppose that Assumption 4.9 holds. Then
there exists an \^\eta \in L2p

\scrC (\BbbP ) which solves (4.1).

Proof. For given \xi \in L4p
\scrF (\BbbP ), \eta \in L2p

\scrC (\BbbP ), and P \in \scrP , it is easy to check that

l(\xi , \cdot , fP ) is convex on L2p
\scrC (\BbbP ) and l(\xi , \eta , \cdot ) is concave on Lq

\scrF (\BbbP ). As \scrD is \sigma (Lq
\scrF (\BbbP ),

Lp
\scrF (\BbbP ))-compact and l(\xi , \eta , \cdot ) is u.s.c. on topology space (Lq

\scrF (\BbbP ), \sigma (L
q
\scrF (\BbbP ), L

p
\scrF (\BbbP ))) by

Lemma 4.14, we have

inf
\eta \in L2p

\scrC (\BbbP )
max
P\in \scrP 

[EP [(\xi  - \eta )2] - \alpha (P )] = max
P\in \scrP 

inf
\eta \in L2p

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )];

inf
\eta \in L2p,M

\scrC (\BbbP )
max
P\in \scrP 

[EP [(\xi  - \eta )2] - \alpha (P )] = max
P\in \scrP 

inf
\eta \in L2p,M

\scrC (\BbbP )
[EP [(\xi  - \eta )2] - \alpha (P )]

by Proposition 4.15, Corollary 4.16, and Theorem 5.1 in section 5. With the help of
Proportion 4.12,

inf
\eta \in L2p

\scrC (\BbbP )
max
P\in \scrP 

[EP [(\xi  - \eta )2] - \alpha (P )] = inf
\eta \in L2p,M

\scrC (\BbbP )
max
P\in \scrP 

[EP [(\xi  - \eta )2] - \alpha (P )].

Therefore, we can take a sequence \{ \eta n;n \in \BbbN \} \subset L2p,M
\scrC (\BbbP ) such that

\rho ((\xi  - \eta n)
2) < \beta +

1

2n
,

where \beta := inf\eta \in L2p
\scrC (\BbbP ) \rho ((\xi  - \eta )2). Since L2p,M

\scrC (\BbbP ) is a weakly compact set, we can take

a subsequence \{ \eta ni
\} i\in \BbbN of \{ \eta n\} n\in \BbbN which weakly converges to some \^\eta \in L2p,M

\scrC (\BbbP ).
By Theorem 5.4 in section 5, there exists a sequence \{ \~\eta i \in conv(\eta ni

, \eta ni+1
, . . .)\} i\in \BbbN 

such that \~\eta i converges to \^\eta in L2p
\scrC (\BbbP )-norm. Then

\rho ((\xi  - \^\eta )2) = \rho ((\xi  - \~\eta i + \~\eta i  - \^\eta )2)(4.4)

= sup
P\in \scrP 

[EP [(\xi  - \~\eta i)
2 + (\~\eta i  - \^\eta )2 + 2(\xi  - \~\eta i)(\~\eta i  - \^\eta )] - \alpha (P )]

\leq sup
P\in \scrP 

[EP [(\xi  - \~\eta i)
2] - \alpha (P )] + sup

P\in \scrP 
EP [(\~\eta i  - \^\eta )2

+ 2(\xi  - \~\eta i)(\~\eta i  - \^\eta )]

= \rho ((\xi  - \~\eta i)
2) + sup

P\in \scrP 
EP [ - (\~\eta i  - \^\eta )2 + 2(\xi  - \^\eta )(\~\eta i  - \^\eta )]

\leq \beta +
1

2i - 1
+ 2 sup

P\in \scrP 
| | fP | | Lq | | \~\eta i  - \^\eta | | L2p | | \xi  - \^\eta | | L2p .

As (4.4) holds for any i \geq 1, we have that \rho ((\xi  - \^\eta )2) = \beta .
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4.2.2. Uniqueness. In this subsection, we prove that the optimal solution of
problem (4.1) is unique.

Proposition 4.18. Suppose that Assumption 4.9 holds. If \^\eta is an optimal solu-
tion of (4.1), then there exists a \^P \in \scrP such that \^\eta = E \^P [\xi | \scrC ].

Proof. If \^\eta is an optimal solution of (4.1), then there exists a \^P \in \scrP such that

sup
P\in \scrP 

[\BbbE [fP (\xi  - \^\eta )2] - \alpha (P )]

= min
\eta \in L2p

\scrC (\BbbP )
sup
P\in \scrP 

[\BbbE [fP (\xi  - \eta )2] - \alpha (P )]

= sup
P\in \scrP 

min
\eta \in L2p

\scrC (\BbbP )
[\BbbE [fP (\xi  - \eta )2] - \alpha (P )]

= max
P\in \scrP 

inf
\eta \in L2p

\scrC (\BbbP )
[\BbbE [fP (\xi  - \eta )2] - \alpha (P )]

= inf
\eta \in L2p

\scrC (\BbbP )
[\BbbE [f \^P (\xi  - \eta )2] - \alpha ( \^P )]

by Corollary 4.16, Theorem 4.17, and Theorem 5.1 in section 5. Thus, by Theorem
5.2 in section 5, (\^\eta , \^P ) is a saddle point, i.e., for all P \in \scrP , \eta \in L2p

\scrC (\BbbP ), we have

\BbbE [fP (\xi  - \^\eta )2] - \alpha (P ) \leq \BbbE 
\bigl[ 
f

\^P (\xi  - \^\eta )2] - \alpha ( \^P ) \leq \BbbE [f \^P (\xi  - \eta )2] - \alpha ( \^P ).

This shows that if \^\eta is an optimal solution, then there exists a \^P \in \scrP such that
\^\eta = E \^P [\xi | \scrC ] by the project property of conditional expectations.

Theorem 4.19 (uniqueness theorem). Suppose that Assumption 4.9 holds.
Then the optimal solution of (4.1) is unique.

Proof. Suppose that there exist two optimal solutions \^\eta 1 and \^\eta 2. Denote the
corresponding probabilities in Proposition 4.18 by \^P1 and \^P2, respectively. Then
\^\eta 1 = E \^P1

[\xi | \scrC ] and \^\eta 2 = E \^P2
[\xi | \scrC ]. For \lambda \in (0, 1), set

P\lambda = \lambda \^P1 + (1 - \lambda ) \^P2,

\lambda \^P1
= \lambda EP\lambda 

\biggl[ 
d \^P1

dP\lambda 
| \scrC 
\biggr] 
,

\lambda \^P2
= (1 - \lambda )EP\lambda 

\biggl[ 
d \^P2

dP\lambda 
| \scrC 
\biggr] 
.

It is easy to verify that \lambda \^P1
+ \lambda \^P2

= 1 and EP\lambda [\xi | \scrC ] = \lambda \^P1
\^\eta 1 + \lambda \^P2

\^\eta 2. Noticing
that E \^Pi

[(\xi  - \^\eta i)| \scrC ] = 0, i = 1, 2, then we have the following equation (details of the
calculation can be found in Lemma 5.5 in section 5):

EP\lambda [(\xi  - EP\lambda [\xi | \scrC ])2] - \alpha (P\lambda )

= \lambda E \^P1
[(\xi  - \^\eta 1)

2  - \lambda \^P2
((\xi  - \^\eta 1)

2  - (\xi  - \^\eta 2)
2 + (\^\eta 1  - \^\eta 2)

2) + \lambda 2
\^P2
(\^\eta 1  - \^\eta 2)

2]

+ (1 - \lambda )E \^P2
[\lambda \^P1

((\xi  - \^\eta 1)
2  - (\xi  - \^\eta 2)

2  - (\^\eta 1  - \^\eta 2)
2)

+ (\xi  - \^\eta 2)
2 + \lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2] - \alpha (P\lambda )

= \lambda E \^P1
[(\xi  - \^\eta 1)

2] + (1 - \lambda )E \^P2
[(\xi  - \^\eta 2)

2] + \lambda E \^P1
[\lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2])

+ (1 - \lambda )E \^P2
[\lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2] - \alpha (P\lambda ).
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Set \beta = inf\eta \in L2p
\scrC (\BbbP ) \rho ((\xi  - \eta )2). By the above equation and the convexity of \alpha (\cdot ),

EP\lambda [(\xi  - EP\lambda [\xi | \scrC ])2] - \alpha (P\lambda )(4.5)

\geq \lambda E \^P1
[(\xi  - \^\eta 1)

2] + (1 - \lambda )E \^P2
[(\xi  - \^\eta 2)

2] - [\lambda \alpha ( \^P1) + (1 - \lambda )\alpha ( \^P2)]

+ \lambda E \^P1
[\lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2] + (1 - \lambda )E \^P2
[\lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2]

= \beta + \lambda E \^P1
[\lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2] + (1 - \lambda )E \^P2
[\lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2]

\geq \beta .

On the other hand, since (\^\eta 1, \^P1) is a saddle point, we have

EP\lambda [(\xi  - EP\lambda [\xi | \scrC ])2] - \alpha (P\lambda ) \leq EP\lambda [(\xi  - \^\eta 1)
2] - \alpha (P\lambda ) \leq E \^P1

[(\xi  - \^\eta 1)
2] - \alpha ( \^P1) = \beta .

It yields that EP\lambda [(\xi  - EP\lambda [\xi | \scrC ])2]  - \alpha (P\lambda ) = \beta . By (4.5), we deduce that \^\eta 1 = \^\eta 2
\BbbP -a.s.

Finally, we will list some properties of the MMSE \rho (\xi | \scrC ).
Proposition 4.20. If Assumption 4.9 holds, then for any \xi \in L4p

\scrF (\BbbP ), we have
(i) if C1 \leq \xi (\omega ) \leq C2 for two constants C1 and C2, then C1 \leq \rho (\xi | \scrC ) \leq C2;
(ii) \rho ( - \xi | \scrC ) =  - \rho (\xi | \scrC );
(iii) For any given \eta 0 \in L2p

\scrC (\BbbP ), we have \rho (\xi + \eta 0| \scrC ) = \rho (\xi | \scrC ) + \eta 0;
(iv) If \xi is independent of the sub \sigma -algebra \scrC under every probability measure

P \in \scrP , then \rho (\xi | \scrC ) is a constant.

Proof. (i) If C1 \leq \xi (\omega ) \leq C2, then for any P \in \scrP , C1 \leq EP [\xi | \scrC ] \leq C2. According
to the proof of Proposition 4.18, \rho (\xi | \scrC ) \in \{ EP [\xi | \scrC ];P \in \scrP \} which leads to C1 \leq 
\rho (\xi | \scrC ) \leq C2.

(ii) Since

\rho ((\xi  - \rho (\xi | \scrC ))2) = inf
\eta \in L2p

\scrC (\BbbP )
\rho ((\xi  - \eta )2) = inf

\eta \in L2p
\scrC (\BbbP )

\rho ((\xi + \eta )2) = inf
\eta \in L2p

\scrC (\BbbP )
\rho (( - \xi  - \eta )2),

it induces that

\rho (( - \xi + \rho (\xi | \scrC ))2) = \rho (( - \xi  - ( - \rho (\xi | \scrC )))2)
= inf

\eta \in L2p
\scrC (\BbbP )

\rho (( - \xi  - \eta )2)

= \rho (( - \xi  - \rho ( - \xi | \scrC ))2).

By Theorem 4.19, we have  - \rho (\xi | \scrC ) = \rho ( - \xi | \scrC ).
(iii) Note that

\rho ((\xi + \eta 0  - (\eta 0 + \rho (\xi | \scrC )))2) = \rho ((\xi  - \rho (\xi | \scrC ))2)
= inf

\eta \in L2p
\scrC (\BbbP )

\rho ((\xi  - \eta )2) = inf
\eta \in L2p

\scrC (\BbbP )
\rho ((\xi + \eta 0  - \eta )2).

By Theorem 4.19, we have \eta 0 + \rho (\xi | \scrC ) = \rho (\xi + \eta 0| \scrC ).
(iv) If \xi is independent of the sub \sigma -algebra \scrC under every P \in \scrP , then EP [\xi | \scrC ]

is a constant for any P \in \scrP . Since \rho (\xi | \scrC ) \in \{ EP [\xi | \scrC ];P \in \scrP \} , we know that \rho (\xi | \scrC ) is
a constant. This completes the proof.

D
ow

nl
oa

de
d 

07
/2

0/
21

 to
 5

8.
19

4.
18

1.
15

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

KALMAN--BUCY FILTERING AND MMSE UNDER UNCERTAINTY 2689

5. Appendix. For the convenience of the reader, we list the main theorems used
in our proofs.

Theorem 5.1 (Fan [18, Theorem 2]). Let \scrX be a compact Hausdorff space and
\scrY be an arbitrary set. Let F be a real valued function defined on \scrX \times \scrY such that,
for every y \in \scrY , F (x, y) is an l.s.c on \scrX . If F is convex on \scrX and concave on \scrY , then

min
x\in \scrX 

sup
y\in \scrY 

F (x, y) = sup
y\in \scrY 

min
x\in \scrX 

F (x, y).

Proof. Refer to Theorem 2 in [18].

Theorem 5.2 (Z\v alinescu [43, Theorem 2.10.1]). Let A and B be two nonempty
sets and f from A \times B to \BbbR 

\bigcup 
\{ \infty \} . Then f has saddle points; i.e., there exists

(\=x, \=y) \in A\times B such that

\forall x \in A, \forall y \in B : f(x, \=y) \leq f(\=x, \=y) \leq f(\=x, y)

if and only if

inf
y\in B

f(\=x, y) = max
x\in A

inf
y\in B

f(x, y) = min
y\in B

sup
x\in A

f(x, y) = sup
x\in A

f(x, \=y).

Theorem 5.3 (Girsanov [20]). Let T > 0 be a fixed time horizon, \scrF t be a
natural filtration of the standard Brownian motion w(\cdot ) up to time t, and \scrF = \scrF T .
Denote by (\Omega ,\scrF , \{ \scrF t\} 0\leq t\leq T ,\BbbP ) be a complete filtered probability space satisfying usual
conditions. We suppose that \phi (t, \omega ) satisfies the following conditions:
(1) \phi (\cdot , \cdot ) are measurable in both variables.
(2) \phi (t, \cdot ) is \scrF t-measurable for fixed t.

(3)
\int T

0
| \phi (t, \omega )| 2dt < \infty almost everywhere, and 0 < c1 \leq | \phi (t, \omega )| \leq c2 for almost

all (t, \omega ), where c1 and c2 are given constants. Then, for any given constant \alpha > 1,
exp[\alpha \zeta ts(\phi )] is integrable and the following inequality holds:

(5.1) exp

\biggl[ 
(\alpha 2  - \alpha )

2
(t - s)c21

\biggr] 
\leq \BbbE [exp[\alpha \zeta ts(\phi )]] \leq exp

\biggl[ 
(\alpha 2  - \alpha )

2
(t - s)c22

\biggr] 
,

where \zeta ts(\phi ) =
\int t

s
\phi (u, \omega )dw(u) - 1

2

\int t

s
\phi 2(u, \omega )du.

Theorem 5.4 (Yosida [42]).Let (X, \| \cdot \| ) be a Banach space and \{ xn\} n\in \BbbN be a
sequence in X that converges weakly to some x \in X. Then there exists, for any
\epsilon > 0, a convex combination

\sum n
j=1 \alpha jxj , (\alpha j \geq 0,

\sum n
j=1 \alpha j = 1) such that \| x  - \sum n

j=1 \alpha jxj\| \leq \epsilon .

Lemma 5.5. Let \^\eta 1 = E \^P1
[\xi | \scrC ], \^\eta 2 = E \^P2

[\xi | \scrC ], P\lambda = \lambda \^P1 + (1  - \lambda ) \^P2, \lambda \^P1
=

\lambda EP\lambda 

\bigl[ 
d \^P1

dP\lambda | \scrC 
\bigr] 
, \lambda \^P2

= (1 - \lambda )EP\lambda 

\bigl[ 
d \^P2

dP\lambda | \scrC 
\bigr] 
. Then we have

EP\lambda [(\xi  - \lambda \^P1
\^\eta 1  - \lambda \^P2

\^\eta 2)
2]

= \lambda E \^P1

\bigl[ 
(\xi  - \^\eta 1)

2
\bigr] 
+ (1 - \lambda )E \^P2

\bigl[ 
(\xi  - \^\eta 2)

2
\bigr] 

+ \lambda E \^P1

\bigl[ 
\lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2
\bigr] 
+ (1 - \lambda )E \^P2

\bigl[ 
\lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2
\bigr] 
.
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Proof.
(5.2)

EP\lambda [(\xi  - \lambda \^P1
\^\eta 1  - \lambda \^P2

\^\eta 2)
2]

= EP\lambda 

\bigl[ \bigl( 
\lambda \^P1

(\xi  - \^\eta 1) + \lambda \^P2
(\xi  - \^\eta 2)

\bigr) 2\bigr] 
= EP\lambda 

\bigl[ 
\lambda 2

\^P1
(\xi  - \^\eta 1)

2 + \lambda 2
\^P2
(\xi  - \^\eta 2)

2 + 2\lambda \^P1
\lambda \^P2

(\xi  - \^\eta 1)(\xi  - \^\eta 1)
\bigr] 

= EP\lambda 

\bigl[ 
\lambda \^P1

(\xi  - \^\eta 1)
2 + \lambda \^P2

(\xi  - \^\eta 2)
2  - \lambda \^P1

\lambda \^P2
(\^\eta 1  - \^\eta 2)

2
\bigr] 

= \lambda E \^P1
[\lambda \^P1

(\xi  - \^\eta 1)
2 + \lambda \^P2

(\xi  - \^\eta 2)
2  - \lambda \^P1

\lambda \^P2
(\^\eta 1  - \^\eta 2)

2]

+ (1 - \lambda )E \^P2
[\lambda \^P1

(\xi  - \^\eta 1)
2 + \lambda \^P2

(\xi  - \^\eta 2)
2  - \lambda \^P1

\lambda \^P2
(\^\eta 1  - \^\eta 2)

2]

= \lambda E \^P1
[(\xi  - \^\eta 1)

2] + (1 - \lambda )E \^P2
[(\xi  - \^\eta 2)

2]

+ \lambda E \^P1
[(\xi  - \^\eta 2)

2  - \lambda \^P1
(\xi  - \^\eta 2)

2  - \lambda \^P2
(\xi  - \^\eta 1)

2  - \lambda \^P1
\lambda \^P2

(\^\eta 1  - \^\eta 2)
2]

+ (1 - \lambda )E \^P2
[(\xi  - \^\eta 1)

2  - \lambda \^P2
(\xi  - \^\eta 1)

2  - \lambda \^P1
(\xi  - \^\eta 2)

2  - \lambda \^P1
\lambda \^P2

(\^\eta 1  - \^\eta 2)
2].

Since

\lambda E \^P1
[(\xi  - \^\eta 2)

2] = \lambda E \^P1
[(\lambda \^P1

+ \lambda \^P2
)(\xi  - \^\eta 2)

2],

(1 - \lambda )E \^P2
[(\xi  - \^\eta 1)

2] = (1 - \lambda )E \^P2
[(\lambda \^P1

+ \lambda \^P2
)(\xi  - \^\eta 1)

2],

it results in that

(5.2) = \lambda E \^P1
[(\xi  - \^\eta 1)

2] + (1 - \lambda )E \^P2
[(\xi  - \^\eta 2)

2]

+ \lambda E \^P1
[\lambda \^P2

(\xi  - \^\eta 2)
2  - \lambda \^P2

(\xi  - \^\eta 1)
2  - \lambda \^P1

\lambda \^P2
(\^\eta 1  - \^\eta 2)

2]

+ (1 - \lambda )E \^P2
[\lambda \^P1

(\xi  - \^\eta 1)
2  - \lambda \^P1

(\xi  - \^\eta 2)
2  - \lambda \^P1

\lambda \^P2
(\^\eta 1  - \^\eta 2)

2].

Firstly, we calculate the items with respect to the expectation \lambda E \^P1
[\cdot ]; the fol-

lowing relations hold:

\lambda \^P2
(\xi 2 + \^\eta 22  - 2\xi \^\eta 2) - \lambda \^P2

(\xi 2 + \^\eta 21  - 2\xi \^\eta 1) - \lambda \^P1
\lambda \^P2

(\^\eta 1  - \^\eta 2)
2

= \lambda \^P2
(\xi 2 + \^\eta 22  - 2\xi \^\eta 2) - \lambda \^P2

(\xi 2 + \^\eta 21  - 2\xi \^\eta 1) - (1 - \lambda \^P2
)\lambda \^P2

(\^\eta 1  - \^\eta 2)
2

= \lambda \^P2
( - 2\^\eta 21 + 2\^\eta 1\^\eta 2 + 2\xi (\^\eta 1  - \^\eta 2)) + \lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2

= \lambda \^P2
[ - 2\^\eta 1(\^\eta 1  - \^\eta 2) + 2\xi (\^\eta 1  - \^\eta 2)] + \lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2

= \lambda \^P2
[2(\xi  - \^\eta 1)(\^\eta 1  - \^\eta 2)] + \lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2.

Since \lambda \^P2
(\^\eta 1  - \^\eta 2) is \scrC -measurable and (\xi  - \^\eta 1) is orthogonal with \sigma -algebra \scrC 

under probability measure \^P1, it results that

\lambda E \^P1
[\lambda \^P2

2(\xi  - \^\eta 1)(\^\eta 1  - \^\eta 2)] = \lambda E \^P1
[\lambda \^P2

(\^\eta 1  - \^\eta 2)]E \^P1
[2(\xi  - \^\eta 1)] = 0.

Secondly, we can also similarly calculate the items with respect to the expectation
(1 - \lambda )E \^P2

[\cdot ]. Finally, (5.2) can be expressed as

EP\lambda [(\xi  - \lambda \^P1
\^\eta 1  - \lambda \^P2

\^\eta 2)
2]

= \lambda E \^P1

\bigl[ 
(\xi  - \^\eta 1)

2
\bigr] 
+ (1 - \lambda )E \^P2

\bigl[ 
(\xi  - \^\eta 2)

2
\bigr] 

+ \lambda E \^P1

\bigl[ 
\lambda 2

\^P2
(\^\eta 1  - \^\eta 2)

2
\bigr] 
+ (1 - \lambda )E \^P2

\bigl[ 
\lambda 2

\^P1
(\^\eta 1  - \^\eta 2)

2
\bigr] 
.

This completes the proof.
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Theorem 5.6. Let fn, f, n \in \BbbN be the real-valued measurable functions on mea-
sure space (\Omega ,\scrF , \mu ) such that

fn
\mu  - \rightarrow f.

g(\cdot ) is a real-valued function defined on a subset D of real-space and \forall \omega \in \Omega , fn(\omega ) \in 
D, f(\omega ) \in D. If \mu is a finite measure on \scrF , D is a open set, g(\cdot ) is a continuous
function on D; then g(fn) \rightarrow \mu g(f).
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